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1. Introduction
Financial institutions are constantly in search of stock trad-
ing strategies that can produce higher returns. Such strate-
gies enable these institutions to either directly profit from
such trades or profit on the high fees they charge to their
clients. Decades of experience has been spent trying to
better understand how these markets work, with the core
question being: when and what stocks do I buy or sell?

Recent developments in machine learning and AI has
opened the way to more profitable trading optimization in
the complex and dynamic stock market. Machine learn-
ing based methods have the ability to recognize patterns
and/or critical factors from given data and make predictions
based on what they learn from the data. However predict-
ing the stock market is very challenging due to the high
noise to signal ratio and various latent factors that affect
stock prices. Therefore, more sophisticated machine learn-
ing methods have been explored to forecast overall trends
of stock prices in the pool of uncertainty.

One of the most intuitive supervised learning approaches
for trading decision making is the Long Short-Term Mem-
ory (LSTM) neural network. However, despite its intuitive-
ness and that it could quickly adapt to the new stock price
by incorporating new training data, many studies show that
LSTM tends to predict the stock price for the next day to be
very close to the closing price of the previous day. In that
sense, the prediction from LSTM will not be useful for gen-
erating any profit. On the other hand, reinforcement learn-
ing, whose formulation does not rely on merely matching
the stock price, could potentially alleviate this problem and
make the prediction more useful.

The development of more sophisticated reinforcement
learning models (Ng et al., 2000; Argall et al., 2009) has
enabled researchers to examine more complex problems
within AI. Of these includes financial market transactions,
specifically, the stock market. Models deployed that behave
greedily and seek to exploit a new trading strategy may not
consider the greater repercussions that come in leading to a
crash in the market (Frye). This work proposes to employ
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a class of RL models that seeks to model decision making
as a probabilistic inference problem, namely - RL as infer-
ence. Throughout this project we will explore how model-
ing financial assets as an inference problem can potentially
enhance our performance and more so, empower financial
institutions with answers to future financial queries.

Reinforcement learning (RL) applications to robotics
(Singh et al., 2019), video games (Silver et al.), and finan-
cial markets (Meng & Khushi, 2019; Xiong et al., 2018;
Pendharkar & Cusatis, 2018) have shown great success in
recent years in demonstrating the capabilities of such mod-
els. These models seek to learn a set of actions for any
given state, namely, a policy function, that maximizes some
reward functions that measure the environments response
to such actions.

Xiong et al. (2018) have incorporated a deep reinforcement
learning algorithm, namely Deep Deterministic Policy Gra-
dient (DDPG), into stock trading strategy optimization to
maximize return in the stock market. DDPG is an improved
version of Deterministic Policy Gradient (DPG) model that
combines the Q-learning and policy gradient frameworks.
Unlike DPG, DDPG uses neural networks as function ap-
proximators. The DDPG consists of two main components:
(i) an actor-critic framework in which the actor network
maps states to actions while critic network computes the
value of the action. (ii) an experience replay that improves
the usage of data by removing correlations between sam-
ple transactions drawn from the state-action history. The
DDPG reports higher return compared to the traditional
min-variance portfolio allocation and Dow Jones Industrial
Average (DJIA) but the scalability to larger data and the
robustness to dynamic environment are still questionable.

(Pendharkar & Cusatis, 2018) have proposed and tested
several RL agents for trading in financial markets for a
personal portfolio. They proposed and compared an on-
policy state-action-reward-state-action (SARSA), an off-
policy Q learning algorithm and an online gradient de-
scent method with TD(λ) algorithm for learning continu-
ous agent actions. Also, they compared the results for us-
ing static knowledge agent and adaptive knowledge agent.
They found that the gradient descent method with adaptive
knowledge agent is able to get most profits compared to
the other methods. It is able to beat the S&P500 and AGG
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portfolio by a large magnitude.

The examples cited above seem very promising for stock
trading. Unfortunately, those RL methods seek to max-
imize the reward function without the need of inference.
Without inference, if we deploy the RL agents on lager
scales, they could lead to catastrophic results. For exam-
ple, for stock trading, it could potentially cause a flash
crash while the RL agent is exploring trading strategies
(Frye & Feige, 2019). The lack of inference is a common
problem in traditional RL. We can foresee a scenario such
that our agent learns to exploit the reward function in an
unpremeditated way (Amodei et al.). “Reward hacking”,
as this scenario has commonly been referred to, has be-
come a major concern for reinforcement learning and AI
as designing a reward or loss function is not always obvi-
ous (Amodei et al.). To address some of these concerns,
RL models casted as graphical models, referred to as RL
as inference, offer some insight to addressing these issues.
(Levine, 2018) presents a detailed discussion and overview
of how, rather than defining a, sometimes arbitrary, reward
function, RL as inference uses rewards to induce distribu-
tions in which the optimal policy seeks to match. This is
achieved by the introduction of binary optimality variables
characterized by a distribution over the rewards. In casting
RL as an inference problem, answers to a variety of de-
cision making queries are also available, including (Xing
et al.):

• Inferring optimal sequences given rewards;

• Inferring prior rewards and actions given optimal se-
quences;

• Inferring a policy function given rewards

(Fu et al.) have proposed Variational Inverse Control with
Events (VICE), an RL as inference framework that seeks to
maximize the probability of an event happening as opposed
to maximizing the cumulative reward. This is achieved
by replacing rewards with log-probabilities of events. The
proposed model directly addresses the issue of reward
hacking by using examples of desired outcomes instead of
actual demonstrations. In doing so, the authors have devel-
oped a framework that does not utilize agent observations
but rather probabilities of events occurring, a more real
world like representation. Their framework can best be put
in context by the following examples: i) In a traditional RL
scenario, a cleaning robot rewarded for picking up crumbs
could game the model by repeatedly scattering the crumbs
and picking them up again; ii) In the VICE framework, a
cleaning robot estimates from its observations if its respon-
sibilities have been completed, never receiving direct feed-
back whether the room is fully cleaned. It is worth noting
that although inverse reinforcement learning, a field of RL
that attempts to learn the reward function from expert be-

havior of an agent, does not involve explicit reward specifi-
cation, it requires expert demonstrations on how to perform
the task. VICE was shown to significantly outperform a va-
riety of RL-based algorithms in a variety of tests including
the Pusher, Ant, and Maze tasks. As a result, in this project,
we want to explore the potential of reinforcement learning
as inference for managing financial assets.

In this report, we present two different RL models that learn
stock trading strategies to improve profits. The first model
is based on Deep Q-Network (DQN) (Mni) algorithm to
train a policy that tries to maximize cumulative reward.
The second model uses policy gradient methods for the
same objective. We then expand both baseline models to
incorporate soft gradient optimality to encourage model ex-
ploration. Soft Q-Learning and soft policy gradients were
benchmarked against their standard counterparts. The re-
mainder of this report will introduce our proposed models,
summarize the results, and provide an outlook for future
work.

2. Methods
Baseline models

MODEL 1

We first propose a Deep Q-Network (DQN) model to learn
the trading strategy necessary to maximize our profits. In
this problem formulation, our agent must decide, for each
day, whether a share of a stock is to be bought, sold, or held
onto. Such decisions must be made based off a rolling win-
dow horizon - providing access to the last Nh trading days.
The action space of this model is 3Ns, with Ns being the
number of stocks available to choose from in our portfolio.
We formulate our DQN model with the following variables:

Policy Net
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(DQN)

Loss
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Q
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Figure 1. Overall workflow of model 1 with DQN

State: The states, s, consist of the per-day differences in
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closing prices for the past training window Nh. Our win-
dow size regulates the number of historic stock prices our
model has access to before taking an action.
Action: The actions, a, in our model include: buy, sell, and
hold for each stock in our portfolio. In order to reduce the
complexity surrounding this already large action space, we
establish that in any particular day we are only able to buy
or sell 1 share of a stock.
Rewards: The reward, r, is the sum of the individual day
rewards over the complete trading time horizon. For a par-
ticular day, r is defined for a variety of actions:

• buy: r = 0
• hold: r = 0
• sell (with inventory > 0): r = close price - buy price
• sell (with inventory = 0): r = -1

Under this reward structure our agent seeks to maximize
large profit transactions. Tuning these definitions can lead
to the model optimizing towards certain policies over oth-
ers. For example, if selling with inventory > 0 was re-
warded with r = 1 then our agent seeks to learn a policy
that will generate any profit rather than the greatest.

Algorithm 1 DQN with Experience Replay
Initialize policy model
Initialize target model Allocate memory M to experience
replay H
for episode = 1, ..., N do

Initialize trading environment
for t=1, ..., T do

Randomly draw ε
if ε ≤ threshold then

Select a random action at
else

at = argmax
a

Q(s, a; θ)

end if
Execute action at and observe rt
Push (st, at, st+1, rt) into replay H
Set st+1 = st
Sample random minibatch from H
Compute expected Q value:

Q∗ = r + γV (s′)

Compute Loss(Q, Q∗) and Optimize DQN
Update model parameters:

θ ← θ + α∇θQθ(s, a)
(
r(s, a) + γV (s′)−Qθ(s, a)

)
For every C steps, reset Q̂ = Q

end for
end for

The underlying driving principle of our DQN comes from

learning Q(s, a) a state-action pair that tells the agent what
action is optimal at a given state. Unlike traditional Q-
learning where these values get tabulated through experi-
ences, our DQN algorithm trains a neural network to ap-
proximate Q(s, a). Our DQN seeks to then optimize the
following loss function:

L(θ) = E(s,a,r,s′)[(r + γV (s′)−Q(s, a; θ)] (1)

Q(s, a) = max
π

E[rt + γrt+1 + γ2 + rt+2 + . . . ] (2)

For Q-learning,

V (s′) = max
a′

Q(s′, a′; θ∗) (3)

For Soft Q-learning,

V (s′) = log

∫
expQ(s′, a′; θ∗)da′. (4)

Where θ∗ and θ correspond to the network parameters of
the Q-network and target network, respectively. To over-
come some of the limitations that come with moving tar-
gets in RL problems - we also incorporate experience re-
play (Mni) to help with the stability of our model. The full
algorithm of our DQN with experience replay as inspired
by (Mni)is shown in 1.

MODEL 2

The second model we propose is different from the first
model in the trading mechanism. Instead of giving the
agent options of buy, sell or hold at each trading day, we
give the agent a portfolio of cash and stocks, and the agent
can distribute the total balance it has to those properties
at each trading day. We are interested in maximizing the
profit, and this usually corresponds to spending all money
in the most promising stock, if we do not consider risk man-
agement. Therefore, we first formulate the RL variables as
follows:

State: The state, s, is defined as the percentage price
changes of all the properties in the previous Nh trading
days, whereNh is a hyperparameter that defines how much
history the agent can get access to.
Action: The action, a, defines which property the agent will
spend money on for the the next trading day. The property
could be cash or stock.
Rewards: The reward, r, is calculated in each trading day.
It is equal to the difference of the balance of the agent one
trading day after the action.
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Figure 2. Overall workflow of model 2 with policy gradient

Basically, our goal is to choose the action that maximize
the reward at each state. To learn the actions, we model
it as a function of the state, which is the policy function
πθ(a|s) in our model. Specifically, πθ(a|s) follows a deep
neural network structure with a softmax output such that it
represents the probability of each action in the given state.
Therefore, in this model, the objective function is:

J(θ) =
∑
s∈S

Vπ(s)

=
∑
s∈S

Eπ[Gt|st = s]

=
∑
s∈S

Eπ[
T∑
k=0

γkrt+k+1|st = s]

Through some derivation, we can get that:

∇θJ(θ) = Eπ[Gt∇θ lnπθ(at|st)] (5)

Then, we can use the REINFORCE (Monte-Carlo policy
gradient) method to optimize the objective function (max-
imize the total reward). The detailed algorithm is listed
below:

Algorithm 2 REINFORCE (Monte-Carlo policy gradient)
Initialize policy model
for episode = 1, ..., N do

Generate M trajectories on policy πθ: sm1 , am1 , rm2 ,
sm2 , am2 , . . . , smT

for t=1, ..., T do
Compute Gmt =

∑T−t
k=0 rt+k+1

Update policy parameters:

θ ← θ +
1

M

∑
m

αγtGmt ∇θ lnπθ(amt |smt )

end for
end for

In the algorithm 2, α is the learning rate and γ is the decay
factor. The number of trajectory is introduced in order to
reduce the variance of the learning process.

RL as Inference

One concern with the baseline models is that they will be
stuck in the local optimal by exploitation and not able to
achieve the real optimality. as a result, we also proposed to
implement the inference counterparts of the baseline mod-
els shown above. Specifically the soft Q-learning and the
soft policy gradient algorithms.

SOFT Q-LEARNING

To encourage our agent to explore we can define a non-
zero probability across all actions for our Q function :
π(a|s) ∝ expQ(s, a). Stemming from a Boltzmann distri-
bution, this corresponds to a negative energy Q-function. A
policy defined through the energy form can then be shown
to be a solution to the maximum-entropy objective:

π∗MaxEnt = argmaxπE
[ T∑
t=0

rt +H(π(∗|st))
]

A solution to the optimal maximum entropy objective can
be done by introducing the soft Bellman equation:

Q∗soft(st, at) = rt + γEst+1∼ps

[
V ∗soft(st+1)

]
V ∗soft(st) = α log

∫
A
exp

(
1

α
Q∗soft(st, a

′)

)
da′

Our update equation remains the same, except for our target
value V(s’):

θ ← θ + α∇θQθ(s, a)
(
r(s, a) + γV (s′)−Qθ(s, a)

)
Q-Learning: V (s′) = maxa′Qθ(s

′, a′)

Soft Q-Learning: V (s′) = softmaxa′Qθ(s
′, a′)

softmaxa′Qθ(s
′, a′) = log

∫
exp

(
Qθ(s

′, a′)
)
da′

SOFT POLICY GRADIENT

In soft policy gradient, instead of optimizing the expected
reward at each time step, it optimizes the KL divergence of
the real optimal trajectory and the trajectory following the
policy function, as shown below:



Financial Assets Optimization with Reinforcement Learning Inference

J(θ) = −DKL(p̂(τ)||p(τ))

=

T∑
t=1

E(st,at)∼p̂(st,at)[r(st, at)]

+ E(st)∼p̂(st)[H(π(at|st))]

Through similar derivation as that in the baseline model,
we can get that:

∇θJ(θ) = Eπ[
T∑
t′=t

(r(st′ , at′)−lnπθ(at′ |st′))∇θ lnπθ(at|st)]

(6)

Therefore, the update rules in Algorithm 2 becomes:

θ ← θ +
1

M

∑
m

αγt(

T−t∑
k=0

rt+k+1 − log πθ(a
m
t+k+1|smt+k+1)))

∇θ log πθ(amt |smt )

3. Experiments and Results
Dataset Information

We used Kaggle’s open source dataset ”Huge Stock Market
Dataset” that contains full historical daily price and vol-
ume information for all US-based stocks and ETFs trad-
ning on NYSE and NASDAQ. This dataset consists of date,
prices (open, high, low, and close), volume, and open in-
terest. We constructed two datasets we thought to be cor-
related and uncorrelated. Dataset A includes Facebook
(FB), Apple (AAPL), Amazon (AMZN), Netflix (NFLX),
Google (GOOGL), and Microsoft (MSFT). Dataset B in-
cludes Boeing (BA), Gilead (GILD), Microsoft (MSFT),
Oil ETFs (USO), Gold ETFs (GLD), and Treasury Bonds
(TLT). From these datasets we hope to examine the perfor-
mance of our model trained on certain stocks and inferring
on others.

For our preliminary work, we began by establish baselines
through only one stock. We selected stock price history
of Apple Inc. (AAPL) for the baseline experiment to es-
timate prospective profits from the two different models.
For training both models, we used one-year price history
of apple, starting from ”2012-01-02” to ”2012-12-31”. Our
models were then evaluated on our test set - AAPL stock
prices for the consecutive year: ”2012-12-31” to ”2013-
12-31”. In both scenarios the ’Close’ price was used for
that day’s stock price.

Results

Figures 3 and 4 shows the predicted day by day trading
strategies for the DQN and REINFORCE models. In all our

preliminary runs we have demonstrated our models’ ability
to successfully predict profitable transactions. It is worth
nothing that the two models cannot be directly compared as
their underlying trading strategies differ - the DQN model
is limited to buying/selling one stock per day while the RE-
INFORCE will spend all of the equity on one stock in each
trading day.

Despite the successes, a few obstacles still remain. The
DQN model ran into issues of not being able to consis-
tently demonstrate the apparent results. This is further sup-
ported when examining the corresponding Loss/Reward vs
Episode plots - as the loss is cyclical and the rewards are not
always increasing. A careful hyperparameter tuning will be
necessary including # of episodes, target model update fre-
quency, Q-network parameters, etc.

For the REINFORCE model, it is able to gain significant
amount of profit from the training data, indicating that it is
able to exploit the structure of the stock prices in the train-
ing set. However, it can be found that the profits on the test
set is much smaller.Also, from the trading strategies plots,
we can see that in the test set, the agent sometimes buy at
the peak and sell at the bottoms, resulting in the loss of eq-
uity. There are two main reasons for worse performance in
the test set. First, the AAPL stock in the test set does not
go up as much as that in the train set. Second, the shapes of
the stock prices is different in the period of time during the
training set and the test set. The model is overfitted to the
structure in the training set and could not generalize to the
test set. Despite the overfitting problem, the profit in the
test set is still higher than spending 50% money on cash
and 50% money on AAPL and hold it for the whole time,
which corresponds to $ 201.77 profits, indicating that the
model can successfully generate profits. Then, we use the
same model for testing on other stocks, including AMZN,
BA and FB. We find that for all of the stocks, our trading
agent is bale to generate profits. However, since the price
of every stock is increasing over the period in the test data,
the profits are really small . For example, for FB, the trad-
ing agent is able to generate a profit of $ 275.74, which
corresponds to 27.5% increase. However, the stock price is
about doubled from the beginning. As a result, the trading
bot is not able to generate more profits than random guess-
ing. The results for the RL as inference is also shown for
those stocks. The performance of RL as inference is very
similar to those from the baseline model. As a result, it is
not clear that RL as inference can significantly improve the
performance of our model.

4. Conclusion and Future Works
At our current stage, we present two different baseline RL
models: DQN and REINFORCE. DQN uses neural net-
works that predict Q values to guide selecting optimal ac-
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Figure 3. DQN trading strategies and corresponding profits on the
train and test sets given a starting budget of $ 1,000.

Figure 4. REINFORCE trading strategies and corresponding
profits on the train and test sets given a starting budget of $ 5,000.

Figure 5. Baseline DQN test results
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Figure 6. Baseline REINFORCE test results Figure 7. DQN with soft Q-learning test results
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Figure 8. Baseline REINFORCE test results

tions for maximum reward, while REINFORCE optimizes
neural networks to maximize reward using policy gradient
method. Both models were trained on AAPL stock price
history to learn trading strategies that can maximize prof-
its. DQN was trained to maximize reward which is the dif-
ference between the buying and selling prices of an AAPL
stock. DQN could generate about $202 on test set while
being limited to buying or selling one stock per day and
given an initial budget of $1,000. REINFORCE could gen-
erate about $700 on the test set, given an initial budget of
$5,000, but it should be noted that the risk is much larger
in this model as the agent spends all of its equity in every
single trading step.

Both baseline models are able to generate profits in the test
set. However, there is no measure in our models to indi-
cate how confident we are about the new predictions. Each
trial in both models results in different profits. In worse
cases, we observed that DQN did not make any transactions
throughout the entire test set because it thought it will lose
money. Additionally, our baseline models do not demon-
strate their ability to successfully profit on other correlated
and uncorrelated stocks.

Moving forward, we first plan to fine tune our existing
models to ensure we have reliable baselines to compare
against. Convergence metrics will need to be established
and presented to verify that our models are not just stochas-
tically making decisions but learning actual policies. Our
preliminary results tells us that is the case as we observe
reasonable buy/sell points. Our baselines will then be used
to predict on a variety of correlated and uncorrelated stocks.

We had previously proposed to incorporate RL as inference
into this work with very little understanding of what that
entailed. Once we become confident of our baseline re-
sults, we will incorporate soft Q-learning algorithms into
our models to improve exploration and prevent entropy col-
lapse that can possibly impede the training process. For the
REINFORCE model, we will incorporate the entropy term
into the objective function and compare the result with the
baseline model.
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